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In wild-type green fluorescent protein (GFP), an important
photosensor protein used in bioimagi¥ythe photochemical
dynamics of the chromophore incorporates asker cycle, where 3
excitation of the photoacid chromophore is followed by proton
transfer to the side groups of the protein pokistough, apparently,
an intramolecular charge transfer (ICT) statés a result, . Neutral | \ " cation
fluorescent emission with high efficiency (quantum yiebg; = 0 N L S
0.8) occurs from the chromophore in its photobase form. In contrast, 0.4
the chromophore of GFR-hydroxybenzylideneimidazolidinone
(HBDI, see Figure 1), shows markedly different behavior, in which
the ground state is recovered within picoseconds with high quantum
yield (®c > 0.999)° Twisting between the phenolate and imida-
zolidinone moieties of HBDI has been suggested as the underlying 08 \ v 20 ps
mechanism of this ultrafast internal conversion (IC) proé&gsus, 680 1720 1760 720 1760 1800 1840
understanding the microscopic mechanisms that underlie the Wavenumber (cm)
dynamics and outcome of such photoinduced chemical reactionsrigure 1. Steady-state and transient spectra showing the isotropic response
requires the determination of the molecular structure in the of the C=O stretching bands in neutral and cationic HBDI in 4CID. Inset
electronic excited state, which involves couplings with electronic shows the HBDI chromophore with the direction of the electronic transition
ground and product states, thereby affecting the reaction quantum
yield. The surrounding s_olvent may affect both the excned_—state coupling between highly excited, presumably low-frequency, modes
structure and the C(.JUp“ngS with othgr states, qften Ieadlqg 10 and the IR-active fingerprint vibrations probed in the experiniént.
pronounced solvent-induced changes in the reaction dynamics. The decay of the €0 band in the Sstate is equal to the population

We now report on the ultrafast polarization-sensitive infrared decay time. In contrast, the bleach decay associated with+@ C
(IR.) spectroscopyof the exci_ted-state strgcture of HBDI, fr_or_n stretching \./ibration in t,heo%tate is determined by both the S
Wh'(.:h we can dra‘”. conclusmqs on the |mportanc.e. of twisting S IC rate and the subsequent cooling process when the excess
motions, O“F focus is on the or|<_antat|_on O.f the transition ’T?O’“e“t internal vibrational energy is dissipated to the solvent. As a result,
of the IR-active carbonyl stretching vibration of HBDI relative to we observe a faster excited-stateQ stretching band decay than
that of the e_Iectr_onic transition dipole moment, which indicates _that a ground-state €0 stretching bleach recovery. Figure 2 shows
th? C=Q vibration acts as a .Sp.eCtat(.)r.mOde for the relatlye the decay Sstate bleach and the State absorption signals of the
orientation of the phenolate and imidazolidinone groups, from which C=0 stretching mode for parallel and perpendicular polarizations
we derive an effective near-complete twisting around the ethylenic for the neutral and cationic forms of HBDI in GDD. These
brifjge upon electronig expitation of HBDL We include the measurements provide the anisotropy= AA/AAg, fron.1 which
anisotropy of the %O. wbrapon of HBPI in the $and § .sta.tes the direction of the &0 stretching transition dipole moment can
for three charged configurations (anionic, neutral, and cationic form) be derived. In Table S1, we summarize our findings for theaC
in the fully deuterated solvents GDD and dimethyl sulfoxidets stretching mode. '

(DMSQdG)' . . For the 9 state, we observe an increase irFQG stretching

In Figure 1, we show the transient difference absorbance responsefrequency going from anionic, via neutral, to cationic HBDI in
of HBDI in the spectral region of the=€0 stretching vibration in CD-0D and DMSO#, in accord:amce with thé literatutereflecting
CD;OD (additional resilts can be found in the Supporting Informa- an increase in €0 bc;nd strength. Differences in electronic charge
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dipole momentueg and the twisting angless and ¢.

EIAon).J'FI'r;eA:m/ssotroEy frez reski) O;?;Z’A“SCO (?jsedzfmzd g?AA‘C;": | distributions are considered to be the cause of ¥hisyt also,
fr“ nd'?]] t) fr ?]W."fl'. : astRr rt] € 'bcrr tgsn ('n?g &flgna S)changes in hydrogen bonding interactions between t#¥©@nd
corresponaing to fransitions of TR-acfive vibrations in thestate, —OH/—0O~ groups with the solvent may play a role. Surprisingly,

xhtlfeag asl:t)fsi;)erb;ngzrllncri?:: I(;]glz\:a;eznv(;b::E?:rﬁlftzzngizgtigsaljll upon electronic excitation, the=€0 stretching mode increases its

transitions in the &stateywﬁh high inte):nal vibrational excess energy frequency_even f_urther with 50 crhf_o r the neutral and cationic

(“hot” ground state). The red-shifts are caused by anharmonic forms, which bel!es the presumed intramolecular charge-trans_fer
' nature of the excited state. We observe a rather broad band (width

1 po . "
TMax Born Institut fu Nichtlineare Optik und Kurzzeitspektroskopie. OT 4.0_50 Cm—) for t_he excited-state €0 Stre.tChmg transition,
8 Georgia Institute of Technology. hinting at significant inhomogeneous broadening. We were not able
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Figure 2. Transient polarization-sensitive response of the(Cstretching
bands in the §and S states for the neutral and cationic species of HBDI
in CD30OD. Top panel shows the direction of the=O bond vector@c—o,
with respect to the electronic transition dipole momenyg, as function of

the twisting angle for single twist (dashed line) and hula twist (solid line).
The observed value f@c—o in ground-state HBDI, witlp = 0, is shown

A structural change in HBDI is likely to proceed by cis/trans
isomerization by a single twist or a hula twisbf the ethylenic
bond. We have considered the orientational changes of th@ C
bond vector caused by single and hula twisting motions of the
chromophore affecting the relative positions of the phenolate and
imidazolidinone moieties (see Figure 2). We find that our estimated
value for the G=O bond vector in the Sstate can only be explained
by a single twist of 120+ 10° or a hula twist of 156G+ 30°. These
values are much larger than the twisting angle of 8und in
guantum chemical calculatiofé{from which conical intersections
at this twisting angle have been assigned as the efficient IC channel.
Although, according to our findings, the equilibrium structure of
HBDI in the S state is even more displaced along the twisting
coordinate upon electronic excitation than in the reported calcula-
tions, we conclude that this large displacenfemiakes the twisting
coordinate a likely candidate for the efficient coupling between S
and 3, leading to IC. The>90° twist also suggests the intervention
of theE-isomer in the photochemistry @HBDI, an isomerization
reported by Tongé&® We note, however, that the rapid reisomer-
ization to theZ-isomer even in the ground state suggests that the
potential energy curve provides a strong restoring force. A highly
twisted species together with the short excited-state lifetime suggests
the involvement of an intersection in the deactivation of thst&te.
Whether additional degrees of freedom play a decisive role in the

as a dot, whereas the gray bar indicates the possible configuration spacgc process and other aspects of the photoph¥/stéd7remains the

for @c=o in the excited state.

to identify for the anionic form of HBDI a distinct-<€0 stretching
band in the $state, which may imply much lower cross-sections,
or more likely a frequency downshift by significant mixing with
aromatic ring vibrations, resulting from mesomeric delocalization
of the negative charge on the excited molecule.

Observation of the decay rates of the=O stretching bands in
both § and S states allows for an unequivocal determination of
the IC and vibrational cooling rates in one experiment. Table S1
shows the results for HBDI in the different charged states. For
neutral and anionic HBDI, we find an IC rate of (1420.2 ps) ™.
Even faster IC rates have been found for cationic HBDI (0.6.2
ps) L. Similar values have been found with ultrafast fluorescence
up-conversiont! and electronic pumpdump—probe!? spectros-

copy, where, however, the signals are also affected by solvation

dynamics. Conversely, the bleach recovery signals of tsC
stretching band are dominated by the slower vibrational cooling
rate of about (6 ps) to (5 ps)?.

subject of further studies.
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